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Abstract

This study explores the relationship between income segregation and urban mobility in
the city of Madrid. Literature shows that bringing mobility into the study of inequality
and segregation can bring an extra dimension to its study. By using a granular mobility
dataset of trips throughout a month of 2022, a series of methods are developed to measure
which districts play a central role in pulling and pushing travellers, and to measure which
residents travel more, and longer distances within the city, based on the median income per
consumption unit and Gini index of their district of residence. This research provides insights
on the ongoing income segregation patterns in Madrid, and identifies slightly homophilic
travelling tendencies based on the socioeconomic background of the district of residence
of individuals. It also reveals that lower income groups tend to perform more trips, and
longer on average, than higher income groups. This research contributes to the field of
urban studies and emerging fields like Science of Cities or Urban Data Science, and aims to
aid policymakers to identify mobility isolated areas in the urban space to develop effective
policies to reduce the negative effects of gentrification and segregation.
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1 Introduction

ITH an increasing urbanisation rate across the globe, understanding how cities evolve and

how we interact with them is a key aspect to improve the overall citizens’ satisfaction and

quality of life. Segregation and inequality are inherent to the existence of complex societies,

and it has become ‘a crucial subject across dozens of scientific fields, from Sociology and Urban
Studies to Environmental Science and Gender Studies’ (Netto et al., 2024).

Unfortunately, ‘due to its pervasive nature, segregation is naturally hard to pinpoint’ (Netto
et al., 2024). Because of its multifactorial nature and its causes, these patterns, including those
happening in urban areas, are still far from being understood. A new line of research expands on
the concept of mobility to further understand the complexity of different kinds of segregation.
After this emergence of a ‘mobilities’ paradigm (Park and Kwan, 2017), segregation is assessed as
a dynamic concept, considering activities happening beyond just residential areas. As Candipan
et al. state, the foundations of the study on (racial) segregation still remain at the analysis
of neighbourhoods of residence, rather than the individuals’ everyday travels. These authors
focus on trips across neighbourhoods instead of just the residence of individuals to study racial
segregation patterns in the United States. Combined with this new line of research, there is
now a higher availability of mobility data, increasing the possibilities to study mobility patterns
and demographic characteristics of individuals with high granularity. This extra dimension of
study can bring many possibilities and angles to apprehend segregation patterns.

The ultimate goal of this study is to contribute to the growing body of research on income
segregation and inequality patterns in Madrid, Spain, with the aid of computational tools to
focus on mobility patterns. I argue that there is a need to add an extra dimension to the study of
segregation by focusing on these daily trips, as this approach helps grasping the aforementioned
complex inequality and segregation causes better than just focusing on residential areas. This
research contributes to the field of urban studies, and emerging fields like Science of Cities
or Urban Data Science, which ‘exploit new large-scale urban datasets with quantitative tools’
(Alessandretti et al., 2023). This research aims to provide insights and methods to identify
mobility patterns based on income in Madrid. These insights can be used by policymakers
to identify mobility isolated areas in the urban space, all with the focus on developing more
effective policies for contributing to societal changes (Park and Kwan, 2017). T aim to answer
the following research question:

RQ: To what extent do residents from economically segregated districts in Madrid
move differently than those in other districts?

To address the main question, I focus on testing whether the following hypotheses hold.
Hypothesis 1 is rooted in the pull-push concept developed by Ravenstein (Ravenstein, 1885)
and whether these pull-push patterns are mimicked in the urban system of Madrid:

Hypothesis 1 (H1): Low-income and highly segregated districts push residents out for daily
mobility purposes, like work or recreational, whereas high-income and low segregated districts
pull residents, as these districts tend to offer higher amenities and work possibilities.
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To test hypothesis 1, I measure which districts play a central role in terms of receiving
(in-weight) or pushing (out-weight) residents from them and the relationship to income. In
addition, I measure mixing patterns across districts based on income.

Hypothesis 2 and hypothesis 3 are based on the continuous expansion of urban cities into
large metropolitan areas and the consequent gentrification patterns exacerbated by contexts
of economic crisis and global tourism (Ardura Urquiaga et al., 2020). As cities tend to grow,
and low-income residents tend to get displaced to the peripheral areas (Ardura Urquiaga et al.,
2020), these might need to travel more often, and longer distances, to central districts offering
work opportunities and a high number of amenities:

Hypothesis 2 (H2): Residents from low-income and highly segregated districts tend to make
a higher number of trips to high-income and low segregated districts than vice versa.

Hypothesis 3 (H3): Residents from low-income and highly segregated districts tend to per-
form, on average, longer distance trips than those living in high-income and low segregated
districts.

To test hypothesis 2, I quantify to what extent residents from lower income districts tend
to travel to higher income districts compared to the rest of residents in terms of number of
trips. To test hypothesis 3, I measure to what extent the average travel distance differs between
residents from low and high income districts.

The literature review touches upon the previous attempts of defining and measuring segre-
gation, and the contextual situation of Madrid as an object of study. It also delves into the
reasoning in depth behind the formulation of the hypotheses that guide the research. The data
section evolves around the dataset used for this project, and the choice of income variables
to guide the process. The Methods section describes the initial exploratory analysis used to
address the state of income distribution in Madrid during 2021. This allows me to select the
appropriate income variables for the study. To do so, (1) I plot and study the distribution of
six income estimators to understand which are more accurate for representing the income and
segregation levels of the districts. Based on this analysis, I select two key variables to under-
stand the interactions between mobility and income: the median income per consumption unit
and the Gini index by district. (2) I then calculate Global and Local Moran indices for each
district based on the median income per consumption unit to illustrate the clustered patterns
of income distribution in the city. After the initial exploratory analysis that indeed reveals
clustering patterns, I develop methods to study the relationship between income and mobility
to test the previously formulated hypotheses. The Results and Discussion sections present the
findings and their implications.

2 Literature Review

2.1 Segregation: A Complex and Multi-Dimensional Process

Despite its complexity, segregation can be defined as the ‘processes, practices or situations
in which individuals or social groups are separated, or their interactions restricted, based on
distinguishing characteristics such as race, ethnicity, income, gender, occupation, education,
geography, age, or other social attributes’ (Netto et al., 2024). Most researchers agree on the
idea that it is a complex process with diverse causal factors, which vary based on the different
social processes taking place at a certain time and location (Marcuse, 2022). In addition, Netto
et al. argue that ‘its complexity is also evident in the frequent conflation of terminology’. As
a result, such multi-dimensional process requires a multidisciplinary approach (Vaughan and
Arbaci, 2011). Due to this intricacy, the existing literature on segregation is very extensive, and
provides many different tools and perspectives to measure it.
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Back in 1988, Massey and Denton attempted to capture such complexity by defining the
five dimensions of segregation: evenness, exposure, clustering, centralization, and concentration
(Massey and Denton, 1988). As Feitosa, F. F. et al. summarise, Massey and Denton defined
evenness and exposure as aspatial dimensions of segregation: ‘evenness concerns the differential
distribution of population groups. Exposure involves the potential contact between different
groups’. On the other hand, clustering, centralization and concentration were classified as
spatial dimensions, since they require information about location, shape and/or size of areal
units: ‘clustering refers to the degree to which members of a certain group live disproportionately
in contiguous areas. Centralization measures the degree to which a group is located near the
centre of an urban area. Concentration indicates the relative amount of physical space occupied’
(Feitosa, F. F. et al., 2007).

It was in 2004 when Reardon and O’Sullivan reviewed Massey and Denton’s work and argued
that segregation has no aspatial dimension. Hence, the difference between evenness (aspatial)
and clustering (spatial) is most likely an effect of data aggregation at different scales. As a result,
they proposed the spatial exposure/isolation dimension, which measures the chance of having
individuals from different (or the same) groups living side by side (Reardon and O’Sullivan,
2004).

2.2 Spatial Segregation Indices

Along with several definitions of segregation, many indices were developed in an attempt to
measure it. As Feitosa, F. F. et al. mention, segregation measures range from the earliest
approaches that focus on calculating the differentiation between two population groups, like
the dissimilarity index D (Duncan and Duncan, 1955) or the exposure/isolation index (Bell,
1954) to more recent and refined methods. A second generation of indices aimed to capture
the segregation between more than two groups (Morgan, 1975; Sakoda, 1981). However, this
family of indices is susceptible to a key problem, highlighted by White: the checkerboard
landscape problem. Let us imagine that the neighbourhoods of a metropolis are represented as
squares, which are coloured as black if the neighbourhood has a high income value, and as white
otherwise. Using these indices, segregation measures for a metropolis in which the squares are
placed like a checkerboard turn out to be the same as the ones for a metropolis in which all the
white squares are moved to one side and all the black squares are moved to the other. This is
clearly a limitation, as we would expect a higher segregation index when the values are highly
clustered. This problem is represented in Figure 1.

D=1 D=1

n

Figure 1: The checkerboard problem occurring in traditional measures. The central and left
squares in the figure obtain the same segregation index value (D = 1), regarding the spatial
arrangement of the spatial units. The right one obtains a different value (D = 0).

To solve this problem, new indices that took into account the spatial arrangement of the
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population were developed, like the index of spatial proximity (White, 1983) or the distance-
based index of dissimilarity (Jakubs, 1981). Within this group of spatial indices it is important
to mention others like the Boundary Perimeter/Area ratio, the spatial Gini index, or the Moran’s
I Global Auto-correlation (Moran, 1950).

The literature on spatial indices quickly evolved so researchers can specify their own defini-
tion of interaction across groups based on certain spatial features. For example, Wong proposed
a spatial version of the previously mentioned dissimilarity index, named the spatial dissimilar-
ity index. Reardon and O’Sullivan replaced population counts of tracts by weighted population
density values.

However, it is important to remember that reducing such a multifactorial problem to a set of
numerical measures has its limitations in itself. As Yao et al. explain, spatial segregation indices
intrinsically have a geographic nature, hence they are subject to two fundamental problems: how
spatial interaction is represented and the choice of a spatial scale. Segregation indices are a key
tool in the exploratory data analysis process, but they are always approximations of the truth,
and further measurements must be completed to try to understand segregation patterns.

2.3 Urban Segregation and Mobility

Urban segregation is the kind of segregation occurring within urban areas. It ‘transfers social
inequalities to the physical space and, in turn, the characteristics of urban areas can accentuate
processes of inequality. Ultimately, these dynamics can be understood as mutually reinforcing’
(Gonzalez-Garcia et al., 2024). As it occurs with all types of segregation, many authors have
tried to identify its causes. Some argue that urban segregation ‘has different meanings and
effects depending on the specific form and structure of the metropolis, as well as the cultural and
historical context. Its categories include income, class, race, and ethnical-spatial segregation’
(White, 1983; Jargowsky, 1996; Reardon and O’Sullivan, 2004). In particular, Marcuse indicates
that urban segregation has been historically related to three aspects: ‘cultural elements (racial,
ethnic, religious), status (income level, power relations) and that related to the division of urban
functions (zoning according to urban use)’.

In recent years, there has been a growing body of research emerging thanks to the ability
to obtain and study big databases, which supports that, to measure segregation, ‘urban re-
searchers should take into account mobility behaviour and not only residential patterns’ (Moro
et al., 2021), questioning classic segregation concepts such as social isolation (Wilson, 1987).
Despite its limitations, mobile phone data has recently emerged as a great source to study these
granular mobility patterns (Gonzalez et al., 2008) that Moro et al. are referring to. Neira et al.
argue that this access to phone data allows to quantify segregation in urban areas by ‘analysing
individual mobility patterns and the places people visit’. For example, Bassolas et al. studied
why some socio-economic minorities get an abnormal COVID-19 impact in the US by focusing on
mobility and commuting patterns. Kazmina et al. argue that, ‘while the spatial focus on neigh-
bourhoods in both literature and policymaking is understandable, it may underestimate actual
patterns of social segregation’. To avoid these pitfalls, they follow a population-scale network
analysis approach to disintegrate socio-economic segregation in the Netherlands. Miiiirisepp
et al. focused on segregation in activity spaces, and mobility flows to analyse ethnic, racial,
religious, linguistic, socioeconomic and demographic dimensions of segregation.

I follow this new line of research and argue that there is a strong need to focus on mobility
patterns to understand segregation in depth, adding an additional dimension to the research
process.
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2.4 Madrid: An Example of a Gentrified, Segregated Southern European
City

There is extensive literature focusing on understanding the state of segregation in cities, espe-
cially in the United States and Northern Europe. For example, Haandrikman et al. compare the
state of socio-economic segregation in Brussels, Copenhagen, Amsterdam, Oslo and Stockholm.
Previously, Musterd et al. concluded that there was an increase in social inequality and spatial
segregation in European capitals between 2001 and 2011, suggesting that the typical European
city is leaning toward the polarised urban model characteristic of North American and Latin
American cities (Borja and Castells, 1997). Unfortunately, ‘given the complex social mix of Eu-
ropean cities, it is not possible to identify a single model of segregation’ (Zambon et al., 2017)
that could be extrapolated to all cities. For example, Mediterranean urban geographies often
differ widely from American or Northern European settlements. These Southern European con-
texts are typically ‘associated with economic informality, planning deregulation, family-oriented
welfare regimes and weak (and partly ineffective) housing policies’ (Zambon et al., 2017). In
addition, the effects of the Second World War, the dictatorship status throughout the XX cen-
tury, and the 2008 crisis have had a widely different impact in Southern Europe than in the rest
of the continent, shaping urban morphology and segregation patterns differently. Due to these
contextual disparities, I argue that it is not feasible to extrapolate the study of segregation to
a wide area, but rather there is a need to study segregation patterns within areas with similar
cultural and contextual characteristics. As a result, I focus in particular on Madrid, capital of
Spain, to study its income segregation patterns.

Madrid is divided into twenty-one districts with a total population of over three million
residents, and a foreign population (non Spanish nationality) of 17% (Municipio en Cifras,
2023). It has been found that ‘residents of large cosmopolitan areas have less exposure to a
socio-economically diverse range of individuals’ (Nilforoshan et al., 2023), meaning that there
might be an increasing pattern of residential segregation within big, cosmopolitan cities. Madrid
is big enough to be considered a large, cosmopolitan area in which citizens tend to cluster
socio-economically. As it often happens with such big metropolises, it is surrounded by many
commuter towns that do not officially depend on the city’s administrative scope, but that
influence it in many ways. For the scope of this project, I have decided to focus only on the
official twenty-one districts that build up Madrid, and these commuter towns have been left out
of the analysis, as most of them have high populations and would need a specific analysis on
their own. Figure 2 shows a map of the official districts of study, whereas Table 1 displays their
population.

To help answer the main research question, I develop three hypotheses rooted in Ravenstein’s
pull-push concept (Ravenstein, 1885), the continuous expansion of cities and the consequent
gentrification patterns.

Hypothesis 1: Pull-Push Patterns in Madrid

The pull-push concept was first introduced by Ravenstein in his Laws of Migration (Ravenstein,
1885), where he recognised the existence of an absorption process through which people sur-
rounding a rapidly growing city move into it. This process continues to happen until the pull
factor is spent. The Laws of Migration (Ravenstein, 1885) comprehend a global understanding
of migration flows than just those happening inside urban areas. However, based on the segre-
gation patterns expressed in Madrid and the large size of the city, I suggest that there might
exist pull-push factors that are being reflected in daily mobility patterns, with high income,
low segregated areas pulling citizens in for work or recreational purposes, and low income, high
segregated areas pushing citizens out.
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Hypotheses 2 and 3: Gentrification in Madrid

These pull-push forces might be exacerbated by the amenity distribution and gentrification
patterns in the city. Like it happens in many Southern European cities, ‘the central district
of Madrid and its surroundings are showing patterns of a new wave of gentrification’ (Ar-
dura Urquiaga et al., 2020). Due to its cultural appeal and lower housing costs, the city has
seen an influx of workers and tourists, which has ‘displaced lower-income populations from the
city’s centre’ (Ardura Urquiaga et al., 2020) towards peripheral areas. As a result, ‘poor resi-
dents who cannot afford to relocate’ must ‘remain in under-served neighbourhoods’ (Kaufmann
et al., 2022). This creates a vicious cycle in which inhabitants from the poorly-connected areas
face ‘ever-more tenuous (and often increasingly expensive) links to even basic access to essential
services like energy, transportation, communications, even certain urban streets’ (Graham and
Marvin, 2002). These difficulties have been observed by Park and Kwan, who estate that so-
cially marginalized groups often show more restricted mobility patterns than other groups due
to a lower share of private vehicle ownership in addition to the deprivation of adequate public
transportation, entrapping them in a resource-poor area. Despite these reduced mobility pat-
terns, it is often the lowest income demographics that need to travel longer distances to reach
thriving areas in the city: ‘Social exclusion is manifest in the fact that these family members
usually have to travel long distances in order to reach important destinations, especially their
workplaces. This fact alone would not necessarily mean social exclusion if it wasn’t connected
with the second aspect of their daily travels: their limited access to modes of mobility’ (Ureta,
2008).

All these gentrification relocation processes are fed by many sociological changes in the
recent years, exacerbating segregation, like the 2008 recession, unemployment and rising house
prices (Gonzélez-Garcia et al., 2024). The social and income segregation in the city also has
a clear spatial manifestation, where most of the ‘rich’ districts are located in the north-west
part of the city, and the ‘poor’ districts are mostly clustered in the south-east (Gonzélez-Garcia
et al., 2024), divided by an imaginary ‘poverty line’. According to these authors, socio-spatial
mobility is affected by these inequalities, and the urban spaces are a reflection of them.

It is the advances in transportation modes, urban sprawl, the aforementioned gentrification
processes and pushing of low-income residents to peripheral areas, and the geographic differences
between home and work locations that support the formulation of the hypotheses driving this
research.
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Districts of Madrid

Legend
01: Centro
02: Arganzuela
03: Retiro
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Figure 2: The official twenty-one districts comprising Madrid.

Name Population
Centro 140,644
Arganzuela 153,982
Retiro 118,335
Salamanca 145,579
Chamartin 145,444
Tetuan 159,564
Chamberi 138,335
Fuencarral-El Pardo 247,327
Moncloa-Aravaca 120,589
Latina 239,693
Carabanchel 258,064
Usera 142,324
Puente de Vallecas 238,577
Moratalaz 93,671
Ciudad Lineal 216,400
Hortaleza 192,809
Villaverde 154,464
Villa de Vallecas 114,469
Vicéalvaro 75,283
San Blas-Canillejas 159,900
Barajas 49,955

Table 1: Population by district in Madrid in January of 2021.
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3 Data

This section delves on the processes to extract the adequate data for the study. To perform
this research, I retrieve a dataset of over four million rows containing home-origin trips and
demographic information during March of 2022 within the official twenty-one districts of study,
provided by The Ministry of Transport and Sustainable Mobility (Ministerio de Transportes
y Movilidad Sostenible (MITMA), 2022). The data presented is aggregated and anonymised.
This mobility dataset is complemented with a selected income indicator, the median income
by unit of consumption by district in 2021, and an intra-district inequality indicator, the Gini
index by district in 2021.

All the code and thorough steps to extract the data and conduct the study are detailed in
the following GitHub repository: https://github.com/carobs9/segregation-madrid.

3.1 Mobility Data

The Ministry of Transport and Sustainable Mobility (Ministerio de Transportes y Movilidad
Sostenible (MITMA ), 2022) published open data on national mobility patterns retrieved from
mobile phone positioning collected by a national mobile network operator in Spain (Ponce-de-
Leon et al., 2021). The trips were aggregated using users’ movements between consecutive stays
of at least 20 minutes in the same area, disregarding trips of less than 500 metres (Ponce-de-
Leon et al., 2021). Finally, the data has been aggregated based on origin-destination (OD)
terms at hourly time scale, encoding trips occurred during a given hour between two districts.
Lastly, ‘for each origin and destination, the activities at origin and destination are classified as
home, work/study place, frequently and infrequently visited place. This data collection is based
on individuals’ active events, e.g., users’ calls together with passive events, in which the user’s
device position is registered due to changes in the cell tower of connection’ (Duran-Sala et al.,
2024). In essence, a trip is defined as the movement of an individual between two consecutive
activities, which are the reasons that motivate a trip (work, home, and other).

The original data encompasses trips from January 1st of 2022 until today, and is updated
regularly. The smallest units of study are districts, hence this is the unit I use to analyse
mobility patterns. Summarising, for each hourly and demographic combination, an aggregated
number of trips and total travelled kilometers (km) are provided. As a result, the following
variables are used in this study:

e Total amount of trips performed by hour and demographic.
e Total amount of km travelled by hour and demographic.
e Origin of the trip.

e Destination of the trip.

For the scope of this project, I rely on a representative temporal and spatial subset of the
data: home-origin trips during March 2022, within the twenty-one districts of Madrid. The rea-
son to use a 2022 mobility sample and not a more recent one is that the latest available district-
level income data provided by the National Statistics Institute at the time of this research dates
from 2021 (Instituto Nacional de Estadistica, 2021a). Hence, I am trying to approximate the
mobility sample as much as possible to the income data. The reason to retrieve March trips
is because it is the first 31-day month in the year that does not have many festivities, as the
beginning of January is still a holiday period in Spain.

The trips dataset is filtered to only contain trips in which individuals travel from home.
The reason for this filtering is that the dataset does not contain information on the district of
residence of each individual, but it does contain the district where aggregated trips start, and
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whether the origin of the aggregated trips is home. By filtering only trips with home origin, it
is possible to extrapolate the district of residence, and, hence, the socioeconomic status of the
traveller. As a result, during the whole month of March 2022, I retrieve a dataset of 4,839,108
hourly and demographic combinations, adding up to around 3,3 quadrillion trips. Figure 3
illustrates the filtering process, and Table 2 displays a subsample of the raw dataset.

Date Hour Origin Dest. Distance Activity Origin ... Age Sex Trips Trips Km
20220301 0 Centro  Centro 0.5-2 home .. 0-25 man 29,337 30,222
20220301 0 Centro  Centro 0.5-2 home . 0-25  woman 34,143 27,522
20220301 0 Centro  Centro 0.5-2 home ... 25-45 man 92,799 63,331
20220331 23 Barajas Barajas 2-10 home ... 25-45 woman 3,400 7,835
20220331 23 Barajas Barajas 2-10 home ... 45-65 man 2,005 9,351
20220331 23 Barajas Barajas 2-10 home .. 25-45  man 4,940 12,918

Table 2: Sample of the raw dataset containing demographic information and the total trips
and total km travelled by each hourly OD and demographic combination. Some demographic
columns have been removed to ease the visualisation.

Updated continuously 19.900.955 rows 4.839.108 rows

All Trips March 2022 Trips March 2022 Home-
Origin Trips

All aggregated trips in Madrid from All aggregated trips in Madrid during the
January 2022 until today month of March of 2022
Home-origin aggregated trips in Madrid
during the month of March of 2022

Figure 3: Filtering process of the trips dataset. For the purpose of the study, only March of
2022 home-origin trips have been used. Using home trips allows to infer the socioeconomic
background of the individuals performing the trips.
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Geometry

In addition, a set of shapefiles are included along the mobility data (Ministerio de Transportes
y Movilidad Sostenible (MITMA), 2022), containing the geometries (polygons and centroids)
of the different districts appearing in the study. These shapefiles allow the user to plot the
different districts of choice. There are extra files containing the mapping between district IDs,
their names and their population.

3.2 Income Data

I select the median income per unit of consumption and the Gini index for further quantita-
tive analysis as income and segregation indicators respectively. In this section, I explain the
reasoning behind such selection among different income variables.

Income Estimators Selection

To infer the economic background of each district, I initially retrieve the following income
variables for the year of 2021 (Instituto Nacional de Estadistica, 2021a) from the National
Statistics Institute:

e Average net income per person.
e Average net income per household.

e Average income per unit of consumption.

Median income per unit of consumption.

Average gross income per person.

Average gross income per household.

Figure 4 and Table 3 show a distribution of the income variables. Based on a preliminary
analysis described in depth in the Methods section, I statistically prove that all income variables
show significant clustering patterns. Despite its smaller Global Moran’s coefficient, I select the
median income per unit of consumption for further analysis, as median measurements reduce
the influence of outliers in comparison to averages. The distribution of this variable throughout
the districts is shown in Figure 5.
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Distribution of Income Statistics
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Figure 4: Distribution of income variables for all districts in 2021
Average income per Median income per Average gross Average gross Average net Average net
consumption unit consumption unit income per income per income per income per
household person household person
Count 21.0 21.0 21.0 21.0 21.0 21.0
Mean 27070.3 22350.0 57604.9 23275.4 44733.4 18045.0
Std Dev 8454.0 5829.7 18974.1 8209.7 12225.6 5363.2
Min 16116.0 14350.0 33395.0 12678.0 28681.0 10797.0
25% 20469.0 18550.0 42779.0 16498.0 35278.0 13719.0
50% (Median) 24874.0 19950.0 50487.0 21495.0 39991.0 17026.0
75% 32322.0 26950.0 72362.0 27311.0 55125.0 20671.0
Max 43930.0 32550.0 97093.0 39346.0 69670.0 28233.0

Table 3: Statistical summary of income data by category.
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Median Income per Consumption Unit Distribution
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Figure 5: Median income per consumption unit by district

Gini index

In addition to the median income per consumption unit, I retrieve the Gini index by district
(Instituto Nacional de Estadistica, 2021b). The Gini index is a great estimator of the segregation
within each of the districts of interest. It ‘is a summary statistic that measures how equitably a
resource is distributed in a population’ (Farris, 2010). The index ranges from 0 (perfect equality)
to 1 (perfect inequality), although it is often expressed as a percentage. In this case, the index
is calculated on an income variable, ‘the income per unit of consumption in the population,
which is an income concept used internationally for a better comparison of individual incomes
according to different types of households’ (Instituto Nacional de Estadistica, 2023). This makes
it a great choice to represent income inequality within districts.

The different Gini indices by district are shown on Table 4, whereas Figure 6 shows a visual
representation of the values on the map. As mentioned above, it is important to keep in mind
that the Gini index is a measure of inequatily and not of wealth, and can enrich the analysis
in terms of understanding segregation patterns, as a single measure cannot fully summarize a
distribution. As Liu and Gastwirth explain, researchers can benefit from combining the Gini
index with another measure which suits the study to overcome these limitations.
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Gini Index Distribution

Figure 6: Gini index by District
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District Gini Index
Centro 39.8
Arganzuela 31.0
Retiro 33.1
Salamanca 40.2
Chamartin 40.2
Tetuan 37.6
Chamberi 37.9
Fuencarral-El Pardo 34.4
Moncloa-Aravaca 40.2
Latina 31.8
Carabanchel 33.1
Usera 33.4
Puente de Vallecas 31.6
Moratalaz 31.5
Ciudad Lineal 35.8
Hortaleza 37.2
Villaverde 31.9
Villa de Vallecas 31.1
Vicélvaro 30.4
San Blas-Canillejas 33.8
Barajas 33.2

Table 4: Gini index by district in Madrid.

4 Methodology

The following section first describes the different methods used to test the state of income
segregation in the year 2021 and to select an adequate income indicator. Then, delves into the
methods used to test hypotheses 1, 2 and 3.

To test hypothesis 1, I build an OD dataset containing normalised trip counts within and
between districts. These counts are used to build a mobility network and a consequent adjacency
matrix. The construction of a network allows to quantitatively analyse the in and out-weights of
the nodes. Lastly, I build complementary assortativity matrices based on trips between income
and Gini index deciles to study whether there are any mobility patterns across socio-economic
groups.

To test hypothesis 2, I use the previously created trip counts dataset. The districts of origin
and destination are classified into four quantiles based on the median income and also on the
Gini index values, and I compare the differences among the furthest quantiles. This allows
to further analyse the total number of trips between and within districts based the income
background of the individuals.

To test hypothesis 3, I analyse the average distance of the trips based on the four aforemen-
tioned quantiles by variable. I retrieve the average trip distance by OD pair, and compare these
based on the top and lowest quantile.

4.1 Measuring Inequality

Spatial autocorrelation is used to describe the extent to which a variable is correlated with itself
through space. This concept is closely related to Tobler’s First Law of Geography, which states
that ‘everything is related to everything else, but near things are more related than distant
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things’ (Tobler, 1970). To understand the state of income distribution and inequality in Madrid
in 2021, I use the traditional spatial autocorrelation Global Moran’s I on each of the income
variables. I also recreate and compare the results against a null model, where the socioeconomic
variable of interest is swapped randomly across districts.

Global Moran’s I

Global Moran’s I (Moran, 1950) is a spatial autocorrelation measure used to evaluate whether a
specific pattern is clustered, dispersed, or random across spatial units. For this measure, the null
hypothesis states that the variable being analysed is randomly distributed among the features in
the area of study. To test the significance of the results, the Global Moran’s I is often calculated
along with a z-score and a p-value. To obtain these, I perform Monte Carlo randomisation, a
typical method to simulate spatial randomness by reassigning the observed median income
per consumption unit values among districts and calculating a randomised distribution for the
Moran’s I. This randomised distribution aids on testing the significance of the results.

A higher Global Moran’s I indicates higher spatial autocorrelation, whereas a lower Global
Moran’s I indicates lower spatial autocorrelation. Z-score values below -1.96 indicate negative
spatial correlation, whereas z-score values over 1.96 indicate positive spatial autocorrelation.
I calculate the Global Moran’s I estimators for each variable of interest, as well as the corre-
sponding p-values and z-scores. Once these p-values are obtained, I reject the null hypothesis
when the p-value is lower than 0.05 (a < 0.05). In the context of this estimator, it is needed to
define what a neighbour is. To do so, I apply row-standardised Queen contiguity weights.

Local Moran’s 1

It is important to note that the Global Moran’s statistic describes a complete spatial pattern,
which could indicate clustering, but it does not capture any nuances in the location of the
clusters. To overcome this limitation, I calculate one of the many Local Indicators of Spatial
Autocorrelation (LISA), the Local Moran’s I values, with their respective local p-values and
local z-scores, one for each district of interest for the median income per consumption unit.
The mechanisms behind the Local Moran’s I are similar to those used for calculating the global
Moran’s I, but they are applied to each of the twenty-one observations, resulting in twenty-one
statistics, instead of just one. To obtain these statistics, I previously needed to calculate spatial
weights based on district adjacency. To keep the results consistent with the global estimators,
I again apply the Queen contiguity weights.

Moran’s Plot

The Moran’s Plot (Anselin, 1996) is a graphical device that aids on visualising the strength of
spatial autocorrelation of a spatial variable. The variable is displayed against its spatial lag,
which are the values of the neighbouring districts, in this case calculated using again Queen
contiguity weights. The values are standardized, meaning that they are centred on the mean
in each axis, and the units represent standard deviations from the mean. The Moran’s Plot is
often displayed with a line of best fit for the dots in it. The slope of this line is interestingly
the value of the Global Moran’s I obtained for the variable of choice.

To ease the interpretation of the obtained Moran’s values, I build the Moran’s Plot for the
median income per consumption unit.

4.2 Construction of OD Trip Counts and Mobility Network

In the previous section, I address the state of income distribution and segregation in 2021 in the
different districts of Madrid. In the following sections, I describe the methods used to study the
interaction between individual mobility patterns and income within the districts of interest for
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the month of March of 2022. These methods mainly help testing hypothesis 1. To do so (1) I
create an OD trip counts dataset, followed by (2) a mobility network and an inherent adjacency
matrix to visually and quantitatively delve on potential patterns of mobility based on nodes’
weights and trips. Lastly, (3) I build several assortativity matrices following closely the study
of Duran-Sala et al..

OD Trip Count Dataset

To further inspect mobility interactions between districts, I build a dataset that contains the
normalised trip counts Ty for March of 2022 between and within districts. I normalise the total
trip count by the total number of trips starting from the district of origin. The reason behind
this normalisation is that the number of trips originating from each district differs widely. For
example, Puente de Vallecas or Carabanchel are the districts where most trips start from in the
original dataset, but Barajas shows the lowest amount of trips. These disparities are closely
related to the population of the districts. See Figure 20 in Appendix A for a visualisation of
these disparities.

Equation 1 formalises the normalisation of trips, where T, is the normalised trip count from
district a to district b, dx(a,b) is an indicator function that equals 1 if the k-th trip originates
in district ¢ and ends in district b, and n is the total number of trips in the dataset.

Tables 5 and 6 how a sample of the final OD trip counts dataset and their statistics, respec-
tively. These counts comprise the base to construct the weights of the edges in the mobility
network. Figure 7 shows the distribution of the trip counts after normalisation.

T p = ZZ:l 5k(a> b)
¢ > b 21 Ok(a, D)

(1)

Trip Count Origin Destination Total Trips from Origin Normalised Trip Count
24,324,971,550,694  Centro Centro 136,712,522,521,830 0.18
18,484,663,675,589  Centro Arganzuela 136,712,522,521,830 0.14
14,590,854,025,006 Vicdlvaro  Moratalaz 119,163,153,410,873 0.12

3,455,182 Barajas Villaverde 78,342,805,567,739 0.00000004410337
31,152,927,901,561  Barajas Barajas 78,342,805,567,739 0.40

Table 5: Sample of the trip counts dataset. The normalised trip count is obtained by dividing
the total trip count between two districts by the total number of trips from the district of origin.

Statistic Value
Mean 0.0476
Standard Deviation 0.0675
Min 0.0000000366
25% 0.0038
50% 0.0129
5% 0.0740
Max 0.3976

Table 6: Statistics of the normalised trips between OD pairs.
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Distribution of Normalised Trip Counts
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Figure 7: Distribution of the normalised trip counts between OD pairs. The minimum trip count
is 0.0000000366, whereas the maximum trip count is 0.398. The mean trip count is 0.0476.

Mobility Network

To further quantify the interaction between mobility and income, I construct a mobility network
of the city for the trips of choice. Real networks often ‘display a large heterogeneity in the
capacity and intensity of the connections’ (Barrat et al., 2003). To capture this heterogeneity,
weights can be assigned to the edges of a network to represent the closeness (or, in contrast,
the farness) of connections between the nodes. Closeness can have many definitions based on
the purpose of the study. In this case, it represents a higher number of trips from one district
to another. The higher number of trips from one district to another, the closer these districts
are. As a result, I build a weighted, directed network G = (V, E, W) where:

e V is the set of nodes, representing the districts, with n = |V| = 21.

e F is the set of edges, representing trips between districts, with m = |E| = 441. The
reason for obtaining 441 edges is that there is always at least one trip from each district
to another in the dataset, so all nodes connect to each other.

e W is the set of possible weights.

e Each edge in F is an ordered OD pair (a,b), indicating a directed trip from district a to
district b.

e Each edge (a,b) is assigned a weight w,yp, representing the normalised number of trips
from district a (origin) to district b (destination). These weights are retrieved from the
OD trip count dataset described earlier. To ease the analysis and visualisation of the
network, the weights are scaled to fall within the range [0, 1].

e The graph is, as a result, weighted and directed, with a weight function w : £ — R, where
w(a,b) = wyy is the weight of the edge (a,b).
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An adjacency matrix is ‘the basic representation of a graph as a matrix. Each row/column
corresponds to a node’ (Coscia, 2021). A weighted, directed network ‘can be represented math-
ematically by an adjacency matrix with entries that are not simply zero or one, but are equal
instead to the weights of the edges’ (Newman, 2004):

Agap = weight of connection from a to b. (2)

I retrieve and display the adjacency matrix A of the mobility network as a heat map. This
provides a visual understanding of the weights of the OD pairs of trips between districts. These
weights are key to study interconnectivity between districts.

The construction of the network mainly aids on capturing the in-weight and out-weight of
the districts. However, when displayed visually, networks can help understand patterns better.
Refer to Figure 21 in Appendix A for a detailed look at a pair of nodes and their weights.
Self-loops have been kept throughout the analysis and visualisation as they represent a high
share of trips.

4.3 Assortativity Matrix

The introduction of matrices has been widely used in the literature to study segregation struc-
tures and mobility patterns. For example, Kazmina et al. introduce what they call the mixing
matriz, which ‘represents the connectivity between different subgroups of the population as de-
fined by their attributes’. These matrices often provide a visual representation of the segregation
patterns within the population, and can also serve as an input for further levels of quantifica-
tion, like the calculation of assortativity coefficients or correlations. In this case, they also group
districts based on deciles, displaying agglomerated patterns that the adjacency matrix cannot
provide.

Following Bokéanyi et al. approach, later used by Duran-Sala et al. in the context of a
mobility network and income segregation, I calculate two assortativity matrices (X) between
ten different income deciles (D) for all of the trips. The income deciles are calculated based on
the two relevant variables: the median income per consumption unit and the Gini index. These
assortativity matrices encode the probability C;; of travellers starting a trip from districts of a
given decile D = i to travel to districts with income decile D = j, where u are the number of
trips originating from districts of decile ¢ and travelling to districts of j, as shown in Equation
3. The entries of these matrices are later normalised to fall between 0 and 1 (X).

Z{U|Du,homc:¢,Du destination=j } 1

Cz‘j = : (3)
Z{u|D

Equation retrieved from Duran-Sala et al.
Afterwards, I calculate the assortativity index p with the Pearson correlation coefficient
of the normalised matrix entries X, following Equation 4. Assortativity can be described as
the tendency of nodes to connect or ‘attach’ to nodes with similar properties in a graph, also
referred to as homophily. Dissortativity describes exactly the opposite tendency. In other
words, a perfect diagonal matrix where complete homophily is observed (no trips are performed
across deciles) will have an assortativity index p of 1, whereas a matrix representing indifferent
behaviour when it comes to the destination of the trips will show an assortativity index p close

to 0. A p-value is calculated along each assortativity index p.

u,homc:i}

p= > 00X = 21X 25 X
~ 2 ~ 2
\/Em‘ 2Xyy — (T4;1%) \/Zm 72Xy~ (Siy9 %)

Equation retrieved from Duran-Sala et al.

(4)
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4.4 Relationship Between In-Weight, Out-Weight and Income

I study the pull-push patterns by district and their relationship to income and inequality by
calculating the total in-weight and out-weight of each node in the graph. To do so, I set
the weighted in-degree to be the sum of the weights of all edges directed into a node, and the
weighted out-degree to be the sum of the weights of all edges directed out of a node. To represent
the out-weights with more granularity, I exclude self-loops, as these do not represent trips to
another district, but trips within the district. I do include these self-loops when performing the
in-weight calculation.

To test whether the variables of choice are related to the in-weight and out-weight of the
nodes in the mobility network, I run the four following regression models:

Model 1: In-weights and the median income per consumption unit.
y = Po+ Binx + € (5)
Where:
e y: Total in-weight of districts.
e x: Median income per consumption unit, scaled by dividing by 1,000.
e [o: Intercept, the expected total in-weight when = = 0.
e [Bin: Coeflicient for x, measuring the change in y for a 1,000-unit increase in z.
e ¢: Error term.

Hypotheses:

e Null Hypothesis (Hp): The total in-weight of districts is not related to the median
income per consumption unit.
Ho: Bin =0 (6)

e Alternative Hypothesis (H;): The total in-weight of districts is positively related to
the median income per consumption unit. Districts with higher median incomes tend to
have higher total in-weights. A significant positive value for S;, would provide evidence
supporting the alternative hypothesis.

H1 . an >0 (7)
Model 2: Out-weights and the median income per consumption unit.

y = Bo + Bout® + € (8)
Where:
e y: Total out-weight of districts.
e x: Median income per consumption unit, scaled by dividing by 1,000.
e [y: Intercept, the expected total out-weight when x = 0.

o [Bout: Coefficient for x, measuring the change in y for a 1,000-unit increase in z.
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e ¢: Error term.

Hypotheses:

e Null Hypothesis (Hp): The total out-weight of districts is not related to the median
income per consumption unit.
HO : /Bout =0 (9)

e Alternative Hypothesis (H;): The total out-weight of districts is negatively related to
the median income per consumption unit. Districts with higher median incomes tend to
have lower total out-weights. A significant negative value for S,,+ would provide evidence
supporting the alternative hypothesis.

Hi : Bour < 0 (10)
Model 3: In-weights and the Gini index.
y = Bo+Yinz +¢€ (11)

Where:

e y: Total in-weight of districts.

e z: Gini index.

e [y: Intercept, the expected total in-weight when = = 0.

e 7in: Coefficient for z, measuring the change in y for a one-unit increase in .

e ¢: Error term.

Hypotheses:

e Null Hypothesis (Hy): The total in-weight of districts is not related to the Gini index.

H() L Yin = 0 (12)

e Alternative Hypothesis (H;): The total in-weight of districts is negatively related to
the Gini index. Districts with higher Gini index tend to have lower total in-weights.
A significant negative value for ~;, would provide evidence supporting the alternative
hypothesis.

Hy:7in <0 (13)
Model 4: Out-weights and the Gini index.
Y = Bo+ Yourx + € (14)
Where:

e y: Total out-weight of districts.

e z: Gini index.
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e [o: Intercept, the expected total out-weight when x = 0.
e You: Coefficient for z, measuring the change in y for a one-unit increase in .
e ¢: Error term.

Hypotheses:

e Null Hypothesis (Hy): The total out-weight of districts is not related to the Gini index.

Hy: Your =0 (15)

e Alternative Hypothesis (H;): The total out-weight of districts is positively related to
the Gini index. Districts with higher Gini index tend to have higher total out-weights.
A significant positive value for v,,; would provide evidence supporting the alternative
hypothesis.

Hi : Your > 0 (16)

Using this approach, Bin, Bout, Vin and 7o represent the slope of the relationship between
the income variables and total in or out-weight of nodes in a linear regression model where the
parameters are estimated by using Ordinary Least Squares (OLS).

4.5 Analysis of the Number of Trips Based on Quantiles

The graph and adjacency matrix built in the previous sections provide a visual understanding
of the distribution of trips throughout the districts. Studying the relationship between the
node weights and income helps understanding the pull-push mobility patterns. On the other
hand, to get a quantitative understanding of the distribution of trips in depth, I further inspect
the weights of the adjacency matrix. Hence, to answer hypothesis 2, I calculate four income
quantiles based on the median income per consumption unit and the Gini index of the districts.
These quantiles are used to classify individuals into low or high income and segregation districts
of residence. Table 7 illustrates the breakdown of quantiles by income variable.

Quantiles Median Income Districts Gini Index Districts
q = 0 (Low) Latina, Carabanchel Arganzuela, Latina
Usera, Puente de Vallecas Puente de Vallecas, Moratalaz
Villaverde, Villa de Vallecas Villa de Vallecas, Vicalvaro
q = 3 (High) Retiro, Salamanca Centro, Salamanca, Chamartin
Chamartin, Chamberi Chamberi, Moncloa-Aravaca

Moncloa-Aravaca

Table 7: Classification of districts into quantiles based on median income per consumption unit
and Gini index. Districts in quantiles 1 and 2 are excluded from this analysis.

To quantify the extent to which residents from low-income districts tend to travel to high-
income districts (and vice versa) relative to all trips, I retrieve the normalised number of trips
originating from low quantiles (¢ = 0) to high quantiles (¢ = 3) and vice versa. I then divide
this sum by the total number of trips. Equation 17 is applied to each variable of interest and
for every combination of quantiles (low to low, low to high, high to high, high to low):

t’U
Phyy = 2% x 100 (17)
total




CONTENTS 24

e v € {income, gini} refers to the variable of choice.

x,y € {l, h} represent the quantile of origin and destination (I: low, h: high).

tz—, are the total normalised trips between quantiles x and y for variable v.

tiota TePTesent the total normalised trips for variable v, defined as:

t;}otal - Ztg—w (18)
I?y

4.6 Analysis of the Distance of Trips Based on Quantiles

To answer hypothesis 3, [ am particularly interested in quantifying the extent to which residents
travel different distances based on the median income per consumption unit or the Gini index
values of their district of residence.

To quantify these potential differences, (1) I separately classify districts into the aforemen-
tioned quantiles: lowest median income quantile (¢ = 0), lowest Gini index quantile (¢ = 0) and
highest median income (¢ = 3) and highest Gini index quantile (¢ = 3). Then, (2) I classify
the trips based on their quantile of origin, both for the median income and the Gini index.
Lastly, (3) I calculate the average distance per trip in km for each OD pair for trips. This is
done by dividing the total distance of the trips in km by the total number of trips for each OD
pair. The total distance of the trips and the total number of trips are two variables available
in the original dataset. This process is shown in Equation 19, where a indicates the district of
origin, and b is the destination district. (4) I compare the resulting average distances based on
the quantile of origin to quantify whether there are substantial differences based on the median
income or Gini index values.

The average distance per trip for a given OD pair is calculated as:

B Total kmyg,,
~ Total Number of Trips,,

Dy, (19)

5 Results

In this research, I delved into the state of income segregation in conjunction with the study of
mobility patterns based on income in Madrid during March of 2022.

5.1 Initial Analysis: Measuring Inequality and Income Variable Selection

First, I analysed the state of income segregation by comparing different global and local Moran’s
I values for several income variables to test whether they were viable to study income segrega-
tion.

Table 8 shows the Global Moran’s coefficients obtained for each income variable in the year
2021. All p-values show statistical significance (a < 0.05), meaning that the null hypothesis stat-
ing that income is dispersed randomly across districts is rejected at least with 95% confidence.
All of the obtained z-scores are higher than 1.96, indicating positive spatial autocorrelation.
Positive Moran’s I values indicate a tendency towards clustering, while negative Moran’s I val-
ues indicate a tendency towards dispersion. In this case, all income variables show a tendency
towards clustering, with the strongest tendency for the average net income per person. Figure 8
displays a visual comparison of the strength of the resulting Global Moran’s coefficients among
all the income variables, and their significance.

Based on this initial analysis, and despite having the lowest clustering coefficient, the median
income per consumption unit is the selected variable to study the interaction between mobility
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due to its insensibility to outliers. This variable is further complemented throughout the study
with the Gini index per district.

Variable Global Moran’s I P-value Z-Score
Average income per consumption unit 0.417 0.001*** 3.814
Median income per consumption unit 0.315 0.006** 2.755
Average gross income per household 0.370 0.0017%** 3.441
Average gross income per person 0.453 0.003** 3.956
Average net income per household 0.358 0.004** 3.299
Average net income per person 0.459 0.001*** 4.018

Table 8: Global Moran’s I, p-values, and z-scores for income variables.

Notes: The results indicate statistical significance for models where p < 0.05. Significance levels: * p < 0.05,
** p < 0.01, ¥** p < 0.001.

Global Moran's | for Income Variables and Significance Levels

Average net income per person |

Average net income per household [ ]

Average gross income per person |

Average gross income per household |

Median income per consumption unit |

Average income per consumption unit |

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46
Global Moran's |

Figure 8: Global Moran’s coefficients for each variable of interest and their significance. Purple
dots indicate significant coefficients (p < 0.05) based on the Monte Carlo test after running 999
simulations.

Figure 9 shows the Global Moran’s I simulated reference distribution on the left, obtained
after running 999 random simulations, and the Moran’s Plot for the median income per con-
sumption unit on the right.

The reference distribution helps compare the obtained statistic (marked with a vertical red
line) to the randomised results (the mean is marked with a blue vertical line). The Moran’s
scatter plot displays the relationship between the median income value of each district and the
median income values of the neighbouring districts. The upper-right and lower-left quadrant
indicate positive spatial autocorrelation, whereas the lower-right and upper-left indicate negative
spatial autocorrelation. Fourteen out of the twenty-one districts are located in the upper-right
and lower-left quadrants, indicating that they tend to follow some clustering pattern. This
essentially means that low median income districts tend to be placed close to other low median
income districts, and high median income districts tend to be located around other high median
income districts.
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Reference Distribution Moran Scatterplot (0.31)
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Figure 9: Reference distribution and Moran’s Plot for the median income per consumption
unit. In the reference distribution, the red vertical line marks the observed Moran’s I value
in relation to the simulated sample, whereas the blue vertical line indicates the mean of the
reference distribution. In the Moran’s Plot, each dot represents a district, and the red line
shows the line of best fit, whose slope is the value of the Global Moran’s I (0.31).

The obtained Local Moran’s I estimators for the median income are displayed in Figure 10.
For each district, a Local Moran’s coefficient, a p-value and a z-score were obtained. Based
on the individual p-values, 48% of the districts have degrees of local spatial association strong
enough to reject the idea of pure chance, meaning that their assigned p-values are below 0.05
(v < 0.05). In other words, following this analysis, around 48% of the districts are considered
to significantly form a spatial cluster in terms of the median income per consumption unit,
meaning that the median income is fairly clustered across districts. These results are visually
reflected in Figure 11, where the districts are coloured based on their assigned income cluster,
High-High (HH), Low-High (LH), Low-Low (LL) and Not Significant (ns).

Based on this analysis, I conclude that there is spatial autocorrelation in terms of the median
income per consumption unit in the city of Madrid in 2021, with significant clustering patterns
in 48% of the districts.
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Local Moran's I: Median income per consumption unit
Global Moran's I: 0.3150, p-value: 0.0060, z-score: 2.7550

Global Moran's I: 0.3150 1.25
p-value: 0.0060
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Figure 10: Local Moran’s choropleth map for the median income per consumption unit.
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Figure 11: Clusters obtained after calculating the Local Moran’s estimates. The obtained
income clusters reflect a north-south divide.
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5.2 Hypothesis 1: Pull-Push Patterns In Madrid

Hypothesis 1 refers to the pull-push patterns introduced by Ravenstein and whether they are
replicated, in a smaller scale, in Madrid. To understand mixing patterns in the city, I constructed
a mobility network containing normalised trip counts and a consequent adjacency matrix. I
built four assortativity matrices to quantify the interaction between mobility across districts
and individual-level socio-economic status (SES). Lastly, I built four simple regression models
to explore the in-weights and out-weights of each district in detail.

Adjacency Matrix

The adjacency matrix (see Figure 12) provides a more nuanced display of the weights of OD
pairs that a network visualisation cannot provide. Rows represents the origin of the trips, while
columns display the destination of these. By observing a specific row of the matrix, one can
develop an understanding on where most trips are directed to for each origin. When observing
a column, one can grasp which districts travel the most to that specific district.

Based on the high weights on the diagonal, it reveals a tendency of travellers to stay within
their own district, or those nearby. Barajas is the district with the highest number of self-loops,
or intra-district trips, followed by Villaverde. This essentially means that individuals travel
short distances overall, preferring to stay in their district of residence, or those nearby. This
matrix reveals some patterns, but it is the assortativity matrices which contain more income
and inequality information.
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Figure 12: Adjacency matrix displayed as a heat map of normalised trips during March of 2022.
The weights have been normalised to fall between 0 and 1, and reduced to one decimal point
only to ease the visualisation.

Assortativity Matrices

To study mixing patterns based on income and segregation, I built assortativity matrices. These
helped quantifying to what extent residents from lower income districts tend to travel to higher
income districts in comparison to the rest of residents. Figures 13 and 14 show the unnormalised
resulting matrices.

Assortativity is also known as homophily, hence lower assortativity indices indicate lower
homophily, and vice versa. The assortativity index p is significant only when taking into account
the Gini index (see Figure 15). With a resulting p = 0.27, the results indicate certain mixing
between deciles, and is thus far from perfect assortativity (or homophily), indicated by p = 1,
but closer to an indifferent behaviour, in which p = 0. In simple terms, the results suggest
that residents from Madrid lack any specific preference for travelling to other districts, despite
their segregation background. There is a highly weighted square comprised by deciles 7 to 9,
indicating relatively higher assortativity for highly segregated deciles. This means that residents
from the top three highest segregated districts tend to make a relatively high amount of trips
within themselves. Based on the relatively strong weights on the diagonal entries, individuals
tend to travel slightly more to similar Gini index deciles.
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Even a lower mixing pattern is observed when taking into account the median income per
consumption unit (see Figure 16), but these results are not significant based on the high p-
value of the resulting index. Despite it all, the lowest income decile (decile 0) shows the highest
number of intra-district trips, followed by decile 7. This essentially means that residents from
the lowest median income districts show the highest homophily, or preference to travel within
districts with similar median income values. Based on the results, individuals also tend to travel
slightly more to similar median income deciles. Yet, further research is needed to investigate
the significance of these particular results.

Based on the assortativity matrices and the adjacency matrix, I conclude that there is a
moderate tendency of individuals to stay within their own Gini index deciles, performing a
relatively high number of intra-district trips, but still showing certain inter-quantile interaction.
A lower assortativity pattern was found in the case of median income deciles, indicating higher
mixing, but the results were not found to be statistically significant.

Assortativity Matrix of Trips Between Deciles
March 2022
Variable: gini index leld
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Figure 13: Assortativity matrix between Gini index deciles. Higher district SES values indicate
a higher segregation index.
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Figure 14: Assortativity matrix between median income per consumption unit deciles. Higher
district SES values indicate higher median income per consumption unit.
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Figure 15: Normalised assortativity matrix between Gini index deciles, where p = 0.27. Higher
district SES values indicate a higher segregation index.
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Assortativity Matrix of Trips Between Deciles
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Figure 16: Normalised assortativity matrix between median income per consumption unit
deciles, where the obtained p = 0.16 is not statistically significant. Higher district SES val-
ues indicate higher median income per consumption unit.

In-Weights and Out-Weights

Table 9 contains a sum of all the in-weights and out-weights for each node in the network.
Figures 17 shows the values on the Madrid map. These weights per node help understand
which districts push and pull more travellers in the city for the whole month of study.

The districts with the highest in-weight are Centro, Puente de Vallecas and Chamberi,
indicating that they receive a relatively high number of trips. On the other spectrum stand
the districts of Barajas, Latina and Villa de Vallecas, with the lowest in-weight, indicating low
travel preference. Puente de Vallecas, Ciudad Lineal and Carabanchel display the highest out-
weight values, indicating a relatively high number of trips outside of these districts, whereas the
lowest out-weight values are located in Barajas, Villaverde and Vicédlvaro, showing a relatively
low number of trips originating from these districts to other areas in the city.

Table 10 displays the coefficients and significance of the four regression models. Based on
the p-values, only Model 3 shows statistically significant results, where p < 0.05. The model
reflects a statistically significant positive effect of the Gini index on the in-weight of the districts,
meaning that districts showing high Gini index values pull residents in. This result does not
align with the previous hypothesis that districts showing higher Gini index values push citizens
out of them.

The rest of the models’ coefficients did not reach statistical significance, and the resulting
coefficients are small. Despite this lack of significance, in every case, results align with the
alternative hypothesis. The results suggest a small positive relationship between the median
income on the in-weight of the districts, and a potential negative relationship between the
median income and the out-weight of the districts. Model 4 shows a modest potential positive
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relationship between the out-weight and the Gini index, though further research with a larger
sample is needed to obtain robustest results.
Refer to Figures 22, 23, 24, 25 in Appendix A for a visualisation of the results.

District Total In-weight Total Out-weight
Centro 3.54 2.07
Arganzuela 2.26 2.09
Retiro 2.48 1.96
Salamanca, 2.61 2.01
Chamartin 2.90 2.00
Tetudn 2.56 2.02
Chamberi 3.06 1.98
Fuencarral-El Pardo 2.49 1.92
Moncloa-Aravaca 2.29 2.02
Latina 2.01 1.93
Carabanchel 2.41 2.08
Usera 2.35 2.05
Puente de Vallecas 3.19 2.18
Moratalaz 2.23 2.05
Ciudad Lineal 2.77 2.15
Hortaleza 2.70 1.89
Villaverde 2.09 1.68
Villa de Vallecas 2.07 1.85
Vicéalvaro 2.24 1.81
San Blas-Canillejas 2.65 1.91
Barajas 1.89 1.51

Table 9: Total in-weight and out-weight by district for the home-origin trips of March of 2022.
Self-loops have been excluded for the calculation of out-weights.
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Figure 17: Distribution of the obtained in-weights per district. It can be observed that the
in-weight values are higher overall than the out-weight distribution. This is in part because
self-loops add up to a big amount of trips.

Model Dependent Variable F-statistic R-Squared Coefficients P-value
1 In-weight 0.3551 0.018 const = 2.2992 0.000
Median income (8;,) = 0.0096  0.596
2 Out-weight 0.0659 0.003 const = 1.9950 0.000
Median income (Bout) = -0.0016 0.800
3 In-weight 8.484 0.309 const = -4.7103 0.823
Gini Index (y:n) = 0.2534 0.009***
4 Out-weight 1.156 0.057 const = 1.5829 0.000
Gini Index (Yout) = 0.0109 0.296

Table 10: OLS regression results.

Notes: The results indicate statistical significance for models where p < 0.05. Significance
levels: * p < 0.05, ** p < 0.01, *** p < 0.001. For the Median income variable, the coefficient
represents the effect per unit increase in income, while for the Gini Index, it shows the effect
of each additional point.

Based on these findings, I conclude that the total in-weight of districts is positively related
to the Gini index. I also conclude that the previous analysis does not provide sufficient evidence
to reject the null hypothesis that the total out-weight of the districts is not related to the median
income per consumption unit and the Gini index, and neither to reject the null hypothesis that
the total in-weight of districts is not related to the median income per consumption unit.

Summarising, the findings failed to substantiate hypothesis 1, indicating that no significant
relationship between low median income, highly segregated districts and out-weight was found,
nor a relationship between high median income, low segregated districts and in-weight. In
contrast, a significant, positive relationship between highly segregated districts and the in-
weight was found.



CONTENTS 35

5.3 Hypothesis 2: Number of Trips

Hypothesis 2 is related to what extent residents from lower income districts tend to travel to
higher income districts in terms of number of trips. To answer this hypothesis, the number of
trips were analysed based on income and Gini index quantiles. Table 11 displays the different
share of trips for the variables of interest. Residents from the lowest median income quantile
travel 1.33% more to the highest income quantile than vice versa. Lowest income quantile
residents performed 6.57% more intra-quantile trips (low to low) than those residents from the
highest income quantile (high to high).

In terms of the Gini index, it is key to notice that there is a higher share of trips from low
segregated districts to high segregated districts than the other way around. The results show
that the lowest Gini index quantile residents perform up to 1.85% more trips to the highest
Gini index quantile than vice versa. In addition, residents from the least segregated quantile
perform up to 2.3% more intra-quantile districts (low to low) than those residents from the
most segregated districts.

Median Income Per Consumption Unit Gini Index

Di—h 3.65% 4.70%
Dh—l 2.32% 2.85%
Di—l 17.67% 14.90%
Dh—h 11.10% 12.60%

Table 11: Percentage of trips from home to any other destination by income deciles.

I conclude that residents from lower median income per consumption unit districts perform
1.33% more trips to higher income quantiles than vice versa. I also conclude that residents from
low segregated districts also tend to perform around 1.85% more trips to higher segregated
districts than vice versa. The differences in intra-quantile share of trips are 6.57% and 2.3% for
the median income and Gini index respectively.

Based on these findings, I suggest that low median income per consumption unit districts
are indeed associated with a higher travel share to high median income per consumption unit
districts, consistent with hypothesis 2. However, the expected trip share from highly segregated
districts to low segregated districts was not supported. In fact, the opposite relationship was
found, where there are a higher number of trips from low segregated districts to highly segregated
ones.

5.4 Hypothesis 3: Distance of Trips

Hypothesis 3 supports a relationship between income and segregation and the average trip
distance. Figures 18 and 19 represent the distribution of the average distance per trip, stratified
by median income and Gini index quantiles. Each dot in the plot shows the average distance
of a specific OD pair. The longest average distance is highlighted for each variable and group.
As expected, the longest average trips are directed towards Barajas, one of the peripheral,
industrial districts.

Residents from the lowest median income quantile travel, on average, 2.09 km per trip,
whereas residents from the highest median income quantile perform slightly shorter trips, with
an average of 1.68 km per trip. This is a difference in the average trip of 0.41 km. This difference
is slightly higher when taking into account the Gini index. Residents from the most segregated
districts perform trips of 1.70 km on average, whereas those living in the least segregated district
perform trips of 2.33 km on average. This is a difference of 0.63 km.

Despite the almost insignificant differences in the results, it is key to notice that the distri-
bution of distances reflects a heavy concentration around shorter trips (between 0.5 km and 2.5
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km) for all residents, despite their background. In addition, low-income and low-Gini quantiles
present a slightly longer tail, indicating that these subgroups are more likely to take longer
trips.

I conclude that residents from the lowest median income quantile travel slightly longer
distances on average than residents from the highest median income quantile. Residents from
the highest Gini index quantile travel shorter distances on average than residents from the
lowest Gini index quantile. I also conclude that the average distance of most trips falls under
a 0.5 km - 2.5 km window, and that those performing the longest average trips belong to the
low-income and low-Gini quantiles.

Hence, the observed results support that residents from low median income per consumption
unit districts tend to perform, on average, longer distance trips than those living in high-income
districts, supporting partly hypothesis 3. However, the results indicate a negative relationship
between the Gini index and the average distance of the trips, indicating that those living in
highly segregated districts perform, on average, shorter trips.
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Figure 18: Distribution of the average distance of trips in km for low and high income deciles.
The deciles were obtained using the median income per consumption unit. Each dot represents
an OD pair, placed on the plot based on the average distance of the trips between the OD pair.
The longest OD trips for each quantile group are labelled.
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Distance Per Trip by Gini Index Group
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Figure 19: Distribution of the average distance of trips in km for low and high income deciles.
The deciles were obtained using the Gini index. Each dot represents an OD pair, placed on the
plot based on the average distance of the trips between the OD pair. The longest OD trips for
each quantile group are labelled.

6 Discussion

RQ: To what extent do residents from economically segregated districts in Madrid
move differently than those in other districts?

6.1 Exploratory Analysis: Is Madrid Really Segregated?

Existing literature shows that Madrid presents a social and economic clustering pattern in which
higher income districts tend to be located around the North-West part of the city, whereas lower
income districts tend to cluster around the South-East (Gonzalez-Garcia et al., 2024). I prove
that Madrid indeed shows clustering patterns in the year 2021 based on six income indicators
by calculating Global and Local Moran’s T values. 48% of the districts have degrees of local
spatial association strong enough to reject the idea of pure chance.

The districts of Fuencarral-El Pardo, Chamartin, Salamanca and Chamberi are part of the
HH cluster, whereas Usera, Villaverde, Villa de Vallecas and Vicalvaro form the LL cluster.
Tetudn, Centro and Ciudad Lineal form the LH cluster. These results correlate with the clear
spatial manifestation divided by a poverty line previously observed by Gonzalez-Garcia et al..

In addition, proving statistically that there is spatial autocorrelation based on the median
income per consumption unit made it more sensible to use this variable to study segregation
for the rest of the study. The use of the median income was complemented with the Gini index
to add an extra dimension to the study, as the Gini index is a great indicator of intra-district
segregation. In this regard, the districts with higher median income values correlate with high
Gini index values, and vice versa. The posterior results are hence a reflection of this correlation.

6.2 Pull-Push Patterns in Districts: Who Travels Where?

I hypothesised that low-income and highly segregated districts push residents out for daily
mobility purposes, like work or recreational, whereas high-income and low segregated districts
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pull residents, as these districts tend to offer higher amenities and work possibilities.

Adjacency Matrix

By looking at the relatively high set of weights located at the diagonal of the matrix (see Figure
12), it is observable that most travellers tend to stay within their own districts of origin or
those that are proximate. These results align with the work of Alessandretti et al., who propose
a container model in which human mobility is organized based on a hierarchical structure of
spatial containers, or places, and with previous research showing that mobility patterns tend
to follow a heavy-tailed distribution (Gonzélez et al., 2008), where individuals travel short
distances often, but travel long distances with less frequency. This short trip tendency is later
reflected in Figures 18 and 19, where the mean of most trips is around two km.

Residents of Barajas show the highest tendency of travelling within their own district. The
Barajas residents’ most travelled destinations after their own district are Hortaleza and San-
Blas Canillejas, which are precisely the only two contiguous districts. Barajas falls under the
relatively high median income quantile, and the relatively low Gini index. Even though further
research is needed to draw any conclusions, I hypothesise that Barajas offers a mix of good
employment opportunities, high living standards and it is a big, peripheral district, located
relatively far from the city centre. These conditions make the district become a city within the
city, in which most residents can find all they need without needing to leave the district. This
is related to the emergence of polycentric cities, metropolitan areas where urban functions are
distributed among a series of subcenters (Van Criekingen et al., 2007). Gordon, Richardson and
Wong concluded that a polycentric urban layout in Los Angeles between 1970 and 1980 has
been associated with shorter work trips, particularly intra-county trips, in the most peripheral
counties in cities like Los Angeles (Gordon et al., 1986). In a smaller scale, this could be the
case of Barajas and other peripheral areas of Madrid, where residents do not need to leave their
subcenters as often, especially if these offer job opportunities. The implications of polycentric
cities on segregation are conflicting and the literature is extense on whether they reduce or
increase inequality overall.

Summarising, the adjacency matrix reveals a strong tendency of travellers to stay within
their own district of residence for most trips, and of travelling short distances, but further quan-
tification of the trips and income stratification is needed to draw conclusions. The development
of assortativity matrices plus the in-weight, out-weight analysis help reveal the reasons behind
these patterns.

Assortativity Matrices

When taking into account the Gini index to build an assortativity matrix, it is observable a
highly weighted square comprised by deciles 7 to 9 (see Figure 15 again for reference). This
indicates that these highly segregated deciles tend to have high assortativity, meaning that
residents from the top three segregated districts show relatively higher homophilic patterns.
This is potentially the case because the most segregated districts are as well the wealthiest,
hence most residents do not really need to leave these districts as they offer a high amount of
job opportunities and amenities. In terms of the median income matrix (see Figure 16), deciles
0 and 1 show some of the highest diagonal weights, particularly decile 0. This shows that
there are relatively strong homophily patterns across the lowest income districts. One potential
reason is that these districts are often located in the peripheral areas, and transportation might
be less accessible than in other districts, making it difficult for residents to access the central,
wealthier districts. Another reason could be the emergence of the aforementioned polycentric
cities, where individuals do not need to need the area to access all they need, but this is unlikely
in the case of the poorest districts, as they are often not equiped with such amenities. Further
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research on several factors is needed to accurately understand the causes of such homophilic
patterns.

These results are reflected in the district out-weights, where some of the districts classified as
LL (Usera, Villaverde, Villa de Vallecas and Vicélvaro) also show some the lowest out-weights
(particularly Villaverde and Vicélvaro), indicating that residents do not leave the district as
much as other residents do.

Summarising, based on the assortativity indices p, individuals tend to slightly travel to
similar median income per consumption unit and Gini index deciles, but these patterns are far
from showing a strong homophilic behaviour. One of the main reasons for the relatively stronger
diagonal weights is that lots of individuals tend to travel within their own districts (self-loops)
or often travel short distances. As median income and Gini index values are fairly clustered
in the city, travelling short distances often implies staying in similar deciles to the district of
residence, increasing the resulting diagonal weights of the matrices. In addition, further research
to understand the causes of the homophilic patterns is needed.

In-Weights and Out-Weights

The weights per node reported in Table 9 help understand which districts push and pull more
travellers in the city for the whole month of study. The range of in-weights is slightly wider than
the range of out-weights, partly because self-loops (trips within districts) have been excluded
for the out-weight calculation, but kept for the in-weight calculation.

At first sight, higher income, higher Gini index and geographically central districts like
Centro, Chamberi or Chamartin have a relatively higher in-weight. Puente de Vallecas, which
shows the second highest in-weight, is an outlier, as it is not one of the richest districts, nor so
central. The reason for such high in-weight is that it receives a fairly high share of trips from
Villa de Vallecas, the nearby district that belongs to the low income cluster. This could mean
that a lot of Villa de Vallecas residents travel to Puente de Vallecas, a contiguous, slightly richer
district, potentially for work purposes. Villa de Vallecas shows the the third lowest in-weight,
indicating that it does not receive many travellers.

Barajas shows the lowest in-weight value. This indicates low travel preference to it. As
shown in the adjacency matrix, Barajas displays the highest number of intra-district trips, yet
it does not receive many trips from the rest of the districts.

The highest out-weight values are observed in Puente de Vallecas, Ciudad Lineal and Cara-
banchel. Puente de Vallecas displays the lowest intra-district preference (a weight of 0.3), indi-
cating that most residents travel to other districts instead of staying in their own. By referring
to the adjacency matrix, Puente de Vallecas shows fairly distributed travelling patterns across
the city. Something similar, in a smaller scale, happens with Ciudad Lineal and Carabanchel,
yet the later seems to show stronger travelling patterns to two particular districts: Usera and
Latina, which are contiguous districts.

To further quantify these observations, the analysis of the four regression models is key.

Regressions

The linear regression results show that (1) there is a statistically significant positive effect of
the Gini index on the in-weight of the districts, and that there is no statistically significant
evidence to support a relationship between (2) low median income and out-weight, (3) high
median income and in-weight, or (4) a high Gini index and out-weight. These results do not
align with hypothesis 2, stating that residents from highly segregated districts might travel more
often to less segregated districts. In fact, the results indicate that travellers tend to perform
trips towards districts with high Gini index values.

A explanation for this tendency might be that, in the original dataset, the higher income
districts also show some of the highest Gini index values, as these richer districts tend to also
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have an unequal distribution of income. These highly unequal districts are also mostly located
in the central area of the city, fulfilled with job opportunities and amenities. These potential
explanations lead to further research on why this high-segregation, high-income dichotomy
happens, and whether it is a local or a global trend.

6.3 Trip Counts: Who Travels More?

Based on the percentage of trips per quantiles (see Table 11), it is observable that residents
from lower median income quantiles perform slightly more trips to high income quantiles than
vice versa. These results support the hypothesis that lower income residents might need to
travel more to perform daily activities, like work or daily purchases, and some leisure activities.
Figure 5 shows that some of the wealthiest districts are located in the most central areas of
the city, often fulfilled with amenities. This could explain the slightly higher number of trips
from low to high income districts, especially in a city like Madrid, were a lot of the economic
activities evolve around tourism, and most touristic attractions are placed in the central areas.

In terms of the Gini index, it is key to notice that there is a higher share of trips from
low segregated districts to high segregated districts than the other way around, showing a flow
from low to high Gini index districts. This aligns with the previously discussed results: as
higher income districts also score high in inequality (or Gini index), the results reflected this
correlation throughout the study.

The results also sustain the previously observed homophilic tendency, where intra-district
and intra-quantile trips compose a high share of trips, especially when considering low median
income and low Gini index quantiles. Even though further research is needed to find the real
causes behind these patterns, literature often shows that low income classes tend to have less
access to transportation possibilities, making it difficult to travel (Park and Kwan, 2017). Yet,
they often need to perform longer trips for work purposes (Ureta, 2008).

Even though the aforementioned differences in the share of trips across low and high deciles
comprise only a few decimal points for both the median income and the Gini index, it does
show a potential pattern, as this study is dealing with trillions of trips within the city. I suggest
that a bigger sample, both in terms of the temporal and spatial variables, could reflect stronger
patterns.

6.4 Trips Based on Distance: Who Travels the Longest?

The distribution of trips by distance is reflected in Figures 18 and 19. The differences in the
proportion of trips based on distance is smaller than expected initially, but, in case of the
median income, the results do align with the initial hypothesis that the average distance in km
for low-income residents is higher than high-income residents. On the other hand, the results
show an unexpected behaviour in terms of the Gini index, as low-Gini index residents tend
to travel slightly longer average trips than high-Gini index residents, failing to substantiate
hypothesis 3. Again, the most feasible explanation for these unexpected results in terms of the
Gini index is that the wealthiest districts tend to score the highest in the Gini index.

The longest average trips are performed to Barajas, which, as explained above, falls under
the medium-high median income quantile, and under the low-medium Gini index quantile. This
district is located in the peripherals of the city, and it counts with a fairly strong industrial
activity, including the international Madrid airport, potentially attracting a high number of
trips.

6.5 Gini Index and Median Income per Consumption Unit

The Gini index is a typical measure of inequality, but it cannot capture all the economic as-
pects behind a district. For that reason, it has been combined with an income indicator, the
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median income per consumption unit. Due to this combination, it was possible to observe that
the wealthiest districts are often the most unequal ones. This enriches the study, as, despite
showing high inequality patterns, most of the richest districts are fulfilled with amenities and
touristic attractions, pulling travellers towards them and displaying high in-weight numbers.
This research shows that, in Madrid, the intra-district inequality does not reduce the attrac-
tion of a district, particularly if the district offers amenities, job opportunities and touristic
attractions.

The final purpose of this research is not to determine why this high-income, high-Gini index
dichotomy takes place, but it does reveal interesting patterns based on these two variables that
need further study.

7 Limitations

7.1 Complex Segregation Patterns

The nuances of segregation are multifaceted and dynamic, often impossible to identify and
measure. This research aimed to add a dimension to the study of segregation and inequality by
focusing on granular mobility patterns in combination with median income per consumption unit
and Gini index values. But the forms of segregation ‘do not exist in isolation; they intersect and
evolve through diverse social, economic, political, spatial and technological processes’ (Netto
et al., 2024). By using the previously defined methods and analyses, I inherently reduce such
complex problem to a set of classifications and boundaries that cannot grasp all of the multiple
domains and scales in which segregation occurs.

Indices’ Problems

Some of the main problems when calculating spatial indices are the measurement of spatial
interaction, the selection of an adequate spatial scale and how to measure significance. Yao
et al. discuss some of these common spatial representation problems in detail: ‘It should be
noted that there are numerous ways to represent spatial interaction, analyse spatial scale and
derive statistical significance’ (Yao et al., 2019). In this particular research, I use the Moran’s I
as the main segregation index, with the consequent limitation that it is sensitive to changes in
the weight matrix of choice (Maruyama, 2015). Hence, the use of a different weight matrix or
standardisation process can influence the resulting coefficients. Refer to Figure 26 on Appendix
A for a comparison of Queen and Rook cardinalities.

In addition, I set the statistical thresholds of significance to follow what is established in
the scientific community. On the other hand, especially when referring to the study of such
multifactorial patterns, making a binary choice based on a threshold does not capture all the
nuances behind the scenes.

Referring to the choice of spatial scale, I selected districts as units of study. The size of the
districts considered in this research is diverse. Some of the most central districts are relatively
small compared to the most peripheral ones. As a result, the number of trips from one district to
another is susceptible to these size differences. For example, it only takes a ten minute car ride
to go from one central district to another, but it can take up to forty minutes for inhabitants of a
big peripheral district to reach a contiguous one. Due to these size disparities, inhabitants from
big peripheral districts might show a strong intra-district weight, like it happens for example in
the case of Barajas. This is not per se an inaccurate result, but it does hide a lot of valuable
information of intra-district behaviour, as these intra-district trips can, in some cases, be longer
than some district-to-district trips, but not be reflected.
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Measuring Wealth and Inequality

My measure of wealth relies on the median income per consumption unit by district, which
does not exhaust the concept of individual-level SES. In addition, due to the impossibility of
obtaining the data on the individuals’ districts of residence, I had to filter only home-origin trips
to infer the socioeconomic background of the travellers. This reduces the richness of the mobility
sample, potentially skewing the results. The reason a more granular approach could not be taken
is due to ethical and privacy constrains, as retrieving mobility and income data at an individual
level is often not possible and trespasses individual privacy limits. As an alternative, Duran-
Sala et al. improve the approximation of the individual-level SES by incorporating information
on individual’s income and demographic status present in the mobility data source, on top of
the residential income level. This addition increases the granularity of the individual profiles,
adding an extra dimension to further understand segregation and inequality processes. Other
authors further identify the usual home areas of the users by performing a thorough analysis
of the overnight stays through several weeks (Ponce-de-Leon et al., 2021), available in other
dataset from the same source.

Transportation and Amenities

Two of the many factors that influence how people move in urban areas are transportation and
amenities. Due to their complexity, these variables have been left out for the study. Yet, they
influence movement heavily and there is extensive research on how they do.

As Anderson and Galaskiewicz summarise, a specific ramification of the literature states that
the higher spheres ‘prioritize certain parts of the city, typically by race and class, to receive
key public amenities, including public transit’, what has been named as transport disadvantage.
This form of social exclusion can heavily limit the mobility of the citizens. Something similar
happens with amenities, where central, richer districts tend to allocate a higher number of them,
influencing the way citizens travel and interact with the urban space.

Yet a general analysis of these variables is used to interpret the results of this research,
further quantification of these two variables will benefit the methods used in this study to
further understand the results.

7.2 Sampling
Temporal Sample

As a temporal subset, I used the month of March of 2022 as a representative sample for the
study of the mobility patterns. Monthly mobility patterns can provide valuable insights in
terms of mobility, but most mobility research focuses on periods longer than that, like Gonzélez
et al., who used a six-month sample, or Edsberg Mgllgaard et al., who used a one-year sample.
In addition, a better approach to represent a typical commuting period would have been to
artificially construct a typical week and weekend by adding individual, non-festive days. This
construction would allow to study the week and weekend differences better.

Spatial Sample

For this research, I do not take into account the several commuter towns that shape the
metropolitan area of Madrid, which has been classified as the largest metropolitan area in
Spain, and the second in the European Union as of 2021 (OECD, 2021). The definitions of the
extension of the metropolitan area change based on the year of study and different sources. To
get a rough idea, Gomez Giménez and Hernandez Aja state that the Madrid metropolitan area
is in continuous expansion, and between 2001 and 2011, up to 40% of the population decided
to locate further than 25 km from the functional city centre. As a result, this metropolitan
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area plays a big role in the influx of travellers in the city, making it important to include as
part of the area of study. Due to the time frame available and the need for a detailed study
of the characteristics of the towns and income data availability, this metropolitan area has not
been included in the research. On the other hand, the mobility data source provides mobility
patterns for the whole Spanish territory, including this metropolitan area. The methods used
in this study can easily be extrapolated to include these towns by just filtering a different set
of districts.

7.3 Trips as Edges

The edges in the mobility network are used to represent normalised trips across and within
districts. Their weight is based on the number of trips, but, as it often happens with network
representations, these weights do not capture all of the information that is provided in the
dataset, becoming inherently a limitation, as there are many other factors that influence trips
than just frequency. For example, the weights assigned to the edges do not contain information
on the purpose of the trip, or the gender of the group performing the trip. Adding more infor-
mation to the edges, particularly the purpose of the trip, which indicates whether individuals
are travelling to work or to other locations, could enrich the analysis massively.

7.4 Mobile Phone Data

Despite being a great proxy for individual-level mobility patterns, phone data can have certain
limitations that skew the analysis. For example, some populations are under represented, espe-
cially those demographic groups in which mobile phone penetration is incomplete, like elderly,
kids, or homeless individuals. In addition, the use mobile phone data raises ethical concerns due
to its sensibility, and potential privacy breaks. As Sieg et al. explore in their research, mobile
phone data must be aggregated and not individualised. It is important to find a balance be-
tween granularity and privacy. The data used in this research has been made publicly available
by The Ministry of Transport and Sustainable Mobility (Ministerio de Transportes y Movilidad
Sostenible (MITMA), 2022). The available data is already aggregated and anonymised, making
it impossible to follow individual trips, ensuring the privacy of the participants. All the steps
throughout this research respect this format and ensure the privacy of the residents.

8 Conclusion

This research is relevant because it delves into the mobility patterns and segregation processes
generated in a southern European metropolis, providing insights that can help apprehend seg-
regation patterns and inequality processes. To answer the research question, the study reveals
moderate homophilic tendencies within the city, where residents from the lowest median in-
come districts travel slightly more, and longer, than those from the highest income districts.
The results also show that residents from the most unequal districts travel the least, and the
shortest.

Further research could complement this study by deepening further into the role of trans-
portation and amenities on the results, and further filtering the trips by purpose. In addition,
including the metropolitan area and developing a normalisation technique to account for the
unequal size of the districts could reveal further insights into the number of trips.

The insights provided in this study can be used by urban planners and policymakers to reduce
inequality in an already segregated city like Madrid. Reducing such inequalities can increase
overall life satisfaction, increase safety in the city and build a more prosperous society. In
addition, the methods defined in the following sections can be applied to any dataset containing
OD trips in combination with relevant socio-demographic data. These methods can be used to
determine segregation patterns and reducing inequality among different territories.
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Comparison of Population and Total Trips by District

A

—e— Total Trips (normalised)
B Population (normalised)

0.8

o
o

Normalized Values

o
~

0.2

0.0

District

Figure 20: Standardised relationship between the population of the districts and the number of
trips originating from each district in the original dataset.
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Figure 21: Sample of normalised trips during March of 2022 between two districts. Node
sizes represent the in-weight, and the colour of the nodes represents the median income per
consumption unit range.
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Figure 22: Model 1 results for the median income per consumption unit and in-weight.
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Figure 23: Model 2 results results for the median income per consumption unit and out-weight.
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Figure 24: Model 3 results for the Gini index and in-weight.
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Figure 25: Model 4 results for the Gini index and out-weight.



BIBLIOGRAPHY 51

Histogram of Cardinalities: Queen vs Rook Weight Matrices
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Figure 26: Comparison of Rook and Queen cardinalities to illustrate how weight matrix choices
as measures of contiguity can influence the results.

Appendix B. Use of Al tools

The following Al tools have been utilized while developing code: ChatGPT-3.5. GPT-3.5 has
been assisting in designing the I¥TEX equations and tables, and helped develop the code used
to perform the study.

Appendix C. Code Availability

All the code needed to replicate the study is available in the following Github repository: https:
//github.com/carobs9/segregation-madrid. An interactive visualisation of the resulting
network of the districts and their weights is available in the following link: https://carobs9.
neocities.org/no_threshold.


https://github.com/carobs9/segregation-madrid
https://github.com/carobs9/segregation-madrid
https://carobs9.neocities.org/no_threshold
https://carobs9.neocities.org/no_threshold
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